дедукции теорема

дедукции теорема
        ДЕДУКЦИИ ТЕОРЕМА (от лат. deductio — выведение) — утверждение о свойствах логической теории. Д. т. гласит: «Если имеется вывод Г, А (- В, то имеется также и вывод Г J- А —> В, где —> — знак импликации, Г — произвольное (возможно пустое) множество формул языка теории, А, В — произвольные формулы языка теории». Название «Д. т .» принадлежит Д. Гильберту и П. Бернайсу Hubert D., Bernays P. Grundlagen der Mathematik. Berlin, 1934), однако доказательство теоремы встречается еще раньше в работе Эрбрана (Herbrand /. Recherches sur la theorie de la demonstration // Travaux de la Societe des Sciences et des Letters de Varsovie. Classe III. Sciences Mathematiques et Physiques. № 33. 1930).
        Д. т. позволяет использовать при построении выводов и доказательств вспомогательное правило: «Если необходимо вывести или доказать импликативную формулу, то достаточно осуществить вспомогательный вывод, в котором в качестве дополнительного допущения принимается антецедент этой формулы, а обосновывается ее консеквент». Обычно такой дополнительный вывод построить значительно проще.
        Доказательство Д. т. осуществляется методом возвратной математической индукции. Цель доказательства — показать, как вспомогательный вывод Г, А |- В может быть на каждом шаге вывода перестроен в вывод Г \-А —> В. При этом стандартное доказательство основывается на использовании следующих дедуктивных принципов: «утверждение консеквента» А — > ( В — > А ) и «самодистрибутивность импликации» ( А — > ( В — > А)) — > ( А —» В) —> (А - С), а также «закон тождества» А —> А, получаемый из этих аксиом. Поскольку указанные формулы включаются в аксиоматику интуиционистской логики, доказательство Д. т. для этой логической теории и более сильных (включая классическую логику) является стандартным. Однако далеко не во всех логических теориях принимаются эти дедуктивные принципы. В ряде исчислений неклассической логики доказательство соответствующей формы Д. т. оказывается нетривиальной процедурой. Для некоторых теорий, напр. для отвергающих импликативную формулировку закона тождества, Д. т. доказать невозможно.
        Д.В. Зайцев

Энциклопедия эпистемологии и философии науки. М.: «Канон+», РООИ «Реабилитация». . 2009.

Игры ⚽ Поможем написать курсовую

Полезное


Смотреть что такое "дедукции теорема" в других словарях:

  • ДЕДУКЦИИ ТЕОРЕМА —     ДЕДУКЦИИ ТЕОРЕМА метатеоретическое утверждение о формальной логической теории (исчислении) Т, в соответствии с которым существование в исчислении Т вывода логического формулы В из называемых гипотезами формул Ai, Ai, ..., А„ (символически: Αι …   Философская энциклопедия

  • ДЕДУКЦИИ ТЕОРЕМА — общее название ряда теорем, позволяющих устанавливать доказуемость импликации в случае, когда дан логический вывод формулы Виз формулы А. В простейшем случае классического, интуиционистского и т. п. исчислений высказываний Д. т. утверждает: если… …   Математическая энциклопедия

  • ТЕОРЕМА ДЕДУКЦИИ —     ТЕОРЕМА ДЕДУКЦИИ см. Дедукции теорема. Новая философская энциклопедия: В 4 тт. М.: Мысль. Под редакцией В. С. Стёпина. 2001 …   Философская энциклопедия

  • ТЕОРЕМА О ДЕДУКЦИИ — теорема дедукции, – одно из важнейших содержательных утверждений математической логики, определяющее связь между логически правильными (аподиктическими) рассуждениями (или умозаключениями, или выводами) и законами (доказуемыми формулами) логики,… …   Философская энциклопедия

  • ТЕОРЕМА — (от греч. theoreo – рассматриваю) научное положение. Философский энциклопедический словарь. 2010. ТЕОРЕМА (греч. ϑεώρημα, от ϑεωρέω – рассматриваю, исследу …   Философская энциклопедия

  • СИНТАКСИЧЕСКАЯ ТЕОРЕМА — теорема синтаксического языка, т. е. теорема о формализованной теории. Примеры С. т.: теорема дедукции для исчисления предикатов, теорема Гёделя о неполноте арифметики. Эти теоремы относятся к элементарному синтаксису. Примером неэлементарной С.… …   Математическая энциклопедия

  • АЛГЕБРА ЛОГИКИ —         система алгебраич. методов решения логич. задач, а также совокупность задач, решаемых такими методами. А. л. в узком смысле слова алгебраич. (табличное, матричное) построение классич. логики высказываний, в котором рассматриваются… …   Философская энциклопедия

  • ПРЕДИКАТОВ ИСЧИСЛЕНИЕ — общее название исчислений математической логики, являющихся формализацией тех разделов совр. логики, к рые изучают субъектно предикатную структуру предложений (высказываний), понимаемую в более широком, чем в традиц. логике, смысле: помимо теории …   Философская энциклопедия

  • логика —         ЛОГИКА (от греч. logik (logos) слово, разум, рассуждение) наука о правильных (корректных) рассуждениях. Традиционно рассуждение состоит из последовательности предложений, названных посылками, из которых следует единственное предложение,… …   Энциклопедия эпистемологии и философии науки

  • МЕТАТЕОРИЯ — (от греч. meta после, за, позади) теория, изучающая язык, структуру и свойства некоторой др. теории. Теория, свойства которой исследуются в М., называется предметной, или объектной, теорией. Наиболее развиты М. в логике и математике (металогика И …   Философская энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»